If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6k^2+13k+6=0
a = 6; b = 13; c = +6;
Δ = b2-4ac
Δ = 132-4·6·6
Δ = 25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{25}=5$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(13)-5}{2*6}=\frac{-18}{12} =-1+1/2 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(13)+5}{2*6}=\frac{-8}{12} =-2/3 $
| 2h(+1)=5h-7 | | 7x^+2x=98 | | -5m+2=-m+18 | | 4(1.25+x)=6(1.00+x) | | 2(y-33+3(y-2)=8 | | 9k-3=7k+5 | | 8b-6b=-26 | | X(3+X)+2x=75 | | 104=-13x | | 2x=8=x=22 | | 2x^2-36x-270=0 | | -43=-w/2 | | 16(y+18)=17y | | 2/3+3m/5=8/13 | | 18(y+2)=19y | | 7x²+2x=98 | | 5x+2x-3=4x+30 | | 0.10x-0.05(x-12)=0.70 | | |3x-3|+5=10 | | x/2+x/9=1/30 | | 7ײ+2x=98 | | x(x+1)=9x^2+3 | | 16x^2-40x+45=0 | | x(x+1)=9x2+3 | | 36=x-2 | | -0.3m=12 | | 1+4x=-4+7x | | 2/3n+8=12 | | -6-2x/3=8 | | -t/2=-77/14 | | 2n+8+12=1 | | 2x4=100 |